Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models
نویسندگان
چکیده
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2-13% vs. 31-75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population.
منابع مشابه
Directly estimating epidemic curves from genomic data
Modern phylodynamic methods interpret an inferred phylogenetic tree as a partial transmission chain providing information about the dynamic process of transmission and removal (where removal may be due to recovery, death or behaviour change). Birth-death and coalescent processes have been introduced to model the stochastic dynamics of epidemic spread under common epidemiological models such as ...
متن کاملInferring Epidemiological Dynamics with Bayesian Coalescent Inference: The Merits of Deterministic and Stochastic Models
Estimation of epidemiological and population parameters from molecular sequence data has become central to the understanding of infectious disease dynamics. Various models have been proposed to infer details of the dynamics that describe epidemic progression. These include inference approaches derived from Kingman's coalescent theory. Here, we use recently described coalescent theory for epidem...
متن کاملPhylodynamics on local sexual contact networks
Phylodynamic models are widely used in infectious disease epidemiology to infer the dynamics and structure of pathogen populations. However, these models generally assume that individual hosts contact one another at random, ignoring the fact that many pathogens spread through highly structured contact networks. We present a new framework for phylodynamics on local contact networks based on pair...
متن کاملDoes Gene Tree Discordance Explain the Mismatch between Macroevolutionary Models and Empirical Patterns of Tree Shape and Branching Times?
Classic null models for speciation and extinction give rise to phylogenies that differ in distribution from empirical phylogenies. In particular, empirical phylogenies are less balanced and have branching times closer to the root compared to phylogenies predicted by common null models. This difference might be due to null models of the speciation and extinction process being too simplistic, or ...
متن کاملAssessing the accuracy of Approximate Bayesian Computation approaches to infer epidemiological parameters from phylogenies
Phylodynamics typically rely on likelihood-based methods to infer epidemiological parameters from dated phylogenies. These methods are essentially based on simple epidemiological models because of the difficulty in expressing the likelihood function analytically. Computing this function numerically raises additional challenges, especially for large phylogenies. Here, we use Approximate Bayesian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014